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ABSTRACT

Hierarchical TiO2-based hollow spheres were successfully synthesized via a

hydrothermal method using FeSO4�7H2O, CoSO4�7H2O and ZnSO4�7H2O as soft

templates. The as-prepared hollow spheres are well dispersed with the diam-

eters of 2–4 lm. The shell and the interior surface of the spheres are composed

of loosely packed grains, which provide a large specific surface area to facilitate

lithium-ion diffusion processes. Among the three types of hybrid hollow

spheres, TiO2/Fe2O3 shows the highest reversible capacity and best cycling

stability (discharge capacities of 290.8 and 210.5 mAh/g were achieved after 100

cycles at 0.1C and 1C, respectively) and rate performance (from 461.1 mAh/g at

0.1C to 79.3 mAh/g at 5C with recovery to 288.6 mAh/g at 0.1C) for anode

materials in lithium-ion batteries.

Introduction

Ever increasing demands for energy have led to

staggering rates of fossil fuel consumption and cor-

responding high rates of harmful emissions. With

established and mounting concerns over climate

change, efforts have been dedicated to developing

new energy storage devices for renewable and clean

energy technologies. As one of the most promising

energy storage technologies, lithium-ion batteries

(LIBs) are widely used as a convenient power source

for various portable electronics and electric vehicles

(EV) due to their superior properties including rela-

tively high-power density, long cycling life and

environmental friendliness [1–4]. However, the lim-

ited energy density of lithium-ion batteries restricts

their wider application in a variety of emerging

vehicles. The energy density of a battery depends

heavily on the output voltage and electrode theoret-

ical capacity [5, 6]. It is well known that improve-

ments in cathode performance are far more

challenging when compared to anodes.
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Consequently, anode development is one of the most

important and accessible factors for improving LIB

energy density and safety [7–9].

Compared to the commercial graphite-based anode

materials with relative low theoretical capacity

(372 mAh/g) and safety concerns, metal oxides such

as TiO2 [10], Fe3O4 [11], Co3O4 [12], SnO2 [13, 14],

NiO [15] and MnO [16] are promising candidates for

the use in lithium-ion batteries due to their relatively

high theoretical capacity, stable reversible capacity

and safety. However, many metal oxides suffer from

the large volume changes ([ 300%) during charging

and discharging leading to pulverization and

delamination of the anode ultimately leading to poor

cycling performance [17, 18]. In addition, the poor

electrical conductivity of the metal oxides typically

leads to electrodes with poor rate capacity [19, 20].

Among the various metal oxides, TiO2 has received

particular interest as a promising battery anode can-

didate because of its low capacity loss, high-power

capability, low cost, abundance and environmental

friendliness [21]. Furthermore, the relatively small

volume change (\ 4%) during charging and dis-

charging helps to preserve the electrode structure

enabling prolonged cycling life. Although the work-

ing potential of TiO2 is a little high to be used as an

anode material, it remains an attractive option due to

its electrochemical stability in common organic elec-

trolytes which leads to an improved overcharge

protection and overall improved battery safety [22].

The electrochemical properties of TiO2 electrodes

heavily depend on their composition, microstructure,

crystallinity and crystallite size. It is well known that

nanostructured materials possess enhanced cycling

and rate performance. Nanostructured TiO2 with

different morphologies, such as nanoparticles

[23, 24], nanorods [25], nanotubes [26], nanowires

[27], nanosheets [28] and nanospheres [29, 30], has

been successfully synthesized, and the electrochemi-

cal properties extensively investigated. However, the

poor electronic conductivity (10-12-10-7 S/cm), the

frequent aggregation of TiO2 nanoparticles and the

low Li? diffusion rate (10-15–10-9 cm2/s) often hin-

der the electrochemical performance of TiO2-based

electrodes. In order to improve the electric conduc-

tivity, carbonaceous materials such as amorphous

carbon [31], carbon nanotubes [32] and graphene [33]

are often used to form either a mixture with TiO2 or a

thin coating layer on its surface. Despite the advan-

tages of adding carbon, its introduction into TiO2 can

reduce the amount of active materials in the electrode

resulting in a reduced mass energy density and vol-

ume energy density of resulting batteries. Recently,

many works focused on fabricating TiO2-based

composite as anode materials for LIBs in order to

improve the electrochemical performance of TiO2 by

utilizing the synergistic effect between TiO2 and

other metal oxides, such as Fe2O3 [34], Nb2O5 [35],

CoO [36], SnO2 [37], NiCo2O4 [38]. Among them, due

to the high theoretical capacity of Fe2O3 (1005 mAh/

g), Co2O3 (890 mAh/g) and ZnO (981 mAh/g), they

show great prospect toward high-energy anodes, and

it can be deduced that the capacity will be largely

improved by preparing TiO2-based composites with

the above three metal oxides due to their synergistic

effect. Moreover, due to their conversion reaction

mechanisms during cycling, the metal oxide will be

reduced to metal first, which will improve the elec-

trical conductivity of the TiO2-based anode materials,

and finally enhance the electrochemical performance.

Herein, we present bicomponent porous hierar-

chical TiO2 spheres for facilitating lithium-ion diffu-

sion through active materials by enlarging the contact

area between the liquid electrolyte and the active

materials. In addition, a second phase of metal oxide

was introduced to the TiO2 grains by a one-step

hydrothermal method using hydrated metal sulfates

as soft templates. The ZnO, Fe2O3 and Co2O3 will

react with lithium ions to form the corresponding Zn,

Fe and Co and Li2O during charging first, which may

facilitate electron and ion transfer during cycling and

thus may also improve the electrochemical perfor-

mance of the TiO2 as anode materials in lithium-ion

batteries.

Experimental

Synthesis of TiO2 hybrid hollow spheres

In a typical synthesis procedure, 1 g of FeSO4�7H2O,

CoSO4�7H2O or ZnSO4�7H2O was added to anhy-

drous ethanol (60 ml) under continuous stirring for

1 h to form a white suspension. Tetrabutyl titanate

(TBT) (4 ml) was then added to the suspension over

20 min. The mixture was stirred for 1 h and trans-

ferred to a 100-mL Teflon-sealed autoclave main-

tained at 200 �C for 24 h. The resulting precipitates

were separated and purified by centrifugation and

washed three times with DI water and ethanol.
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Samples were then dried in a vacuum oven at 70 �C
for 5 h to yield hierarchical porous TiO2/Fe2O3,

TiO2/CO2O3 and TiO2/ZnO hybrid hollow spheres.

Characterization

X-ray diffraction (XRD) patterns were measured on a

Bruker D8 Advance diffractometer using Ni-filtered

Cu Ka radiation. The morphologies of the as-pre-

pared bicomponent hierarchical porous hollow

spheres were observed by SEM (Carl Zeiss Jena

scanning microscope) and TEM (JEOL JEM-2011).

Brunner - Emmet - Teller (BET) surface area was

measured by N2 adsorption at liquid nitrogen tem-

perature using a NOVA4000 automated gas sorption

system. X-ray photoelectron spectroscopy (XPS)

(ESCALAB 250XI) was used to further verify the

chemical composition of the samples.

Electrochemical measurements

In order to further evaluate the electrochemical per-

formance of the as-prepared TiO2/Fe2O3, TiO2/

CO2O3 and TiO2/ZnO hollow spheres as anode

materials in lithium-ion batteries, CR2032 coin-type

cells were assembled in a glove box (Mikrouna,

Shanghai, China) filled with high-purity Ar. Neat

lithium metal foil was used as both the counter and

reference electrodes, polypropylene microporous

film (Celgard 2400) was used as a separator, and a

1-M LiPF6 dissolved in a mixture of ethylene car-

bonate (EC), diethyl carbonate (DEC) and dimethyl

carbonate (DMC) (1:1:1 by volume) served as the

electrolyte. The working electrodes were fabricated

by mixing the active material (TiO2/Fe2O3, TiO2/

CO2O3 or TiO2/ZnO hybrid hollow spheres), carbon

black and polyvinylidene fluoride (PVDF) in a weight

ratio of 75: 15: 10. The slurry was uniformly spread

on Cu foil and dried at 110 �C for 12 h in vacuum.

The cells were cycled between 0.001 and 2.5 V (vs.

Li/Li?) at current densities from 0.1C to 5C at room

temperature. Cyclic voltammetry (CV) and electro-

chemical impedance spectroscopy (EIS) were carried

out on an electrochemical workstation (CHI660C,

Shanghai Chenhua). The CV was performed at a scan

rate of 0.1 mV/s. EIS measurements were recorded

over a frequency range of 100 kHz to 0.01 Hz.

Results and discussion

The overall synthesis strategy is illustrated in

Scheme 1. First, hydrated sulfate templates were

formed by dispersing hydrated sulfates in anhydrous

ethanol solution with appropriate stirring speed at

which time the hydrated sulfate particles aggregate

to form spheres. With the slow addition of tetrabutyl

titanate, uniform solutions are obtained. The

hydrolysis of tetrabutyl titanate to form TiO2

nanocrystallites is triggered by the slow release of

water from the hydrated sulfates during hydrother-

mal treatment. Hollow TiO2 spheres were obtained

by removing the templates during the washing stage.

Figure 1 shows SEM images of TiO2 hybrid hollow

spheres prepared using different templates. The

bicomponent TiO2 hollow spheres with diameters in

the range of 2–4 lm exhibit well-developed spherical

morphologies (Fig. 1a–c). SEM images of the TiO2

spheres clearly show their hollow structure (Fig. 1d–

f). The hollow structure is further supported through

TEM imaging (Fig. 2) in which a clear contrast

between the edge and the center of the TiO2 hollow

spheres can be observed. Figure 1e, f shows that the

hollow spheres possess a rough internal surface and

loosely packed shell which confer high specific sur-

face area. These features are also indicative of the

spherical hydrated sulfate templates used in the TiO2

sphere formation while also providing additional

evidence for the proposed growth mechanism.

The XRD patterns of the as-prepared hybrid hollow

spheres are shown in Fig. 3. It can be seen that

regardless of the hydrated sulfate used as a template,

Scheme 1 The synthesis strategy of the TiO2 hybrid hollow

spheres.
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the diffraction peaks of the as-prepared materials

could all be indexed to the anatase phase of TiO2

(JCPDS Card No. 21-1272). Furthermore, no evidence

of the template materials is observed, indicating

successful removal of the template materials. The

average TiO2 crystallite size was calculated as 8.5 nm

using the Debye–Scherrer equation [39].

The BET-specific surface area of the hierarchical

porous TiO2/Fe2O3 hybrid hollow spheres is

225.25 ± 3.25 m2/g. The inset in Fig. 4 shows the

Figure 1 SEM images of

bicomponent hollow spheres

prepared by hydrated sulfate

templating a, d TiO2/Fe2O3, b,

e TiO2/CO2O3 and c, f TiO2/

ZnO.

Figure 2 TEM images of the bicomponent hollow spheres a TiO2/Fe2O3, b TiO2/Co2O3 and c TiO2/ZnO.
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pore size distribution for the hollow TiO2/Fe2O3

spheres, and the Barrett–Joyner–Halenda (BJH)

mesopore size distribution of the sample exhibits a

sharp peak centered at 3.95 nm. This indicates a rel-

atively uniform mesopore size throughout the hollow

TiO2 shell. For hollow TiO2/Co2O3 and TiO2/ZnO

spheres, the BET measurements also show narrow

pore size distributions with average sizes of 3.82 nm

and 3.85 nm and large specific surface areas of

220.69 ± 2.67 m2/g and 223.54 ± 3.58 m2/g, respec-

tively. The consistency of the observed pore sizes and

high surface areas across several different metal sul-

fate hydrates suggests that a hydrated sulfate-as-

sisted hydrothermal method is an ideal templating

approach. Both the high specific surface area and

hierarchical porous structure of the hybrid spheres

are likely contributors to the improved electrochem-

ical performance of lithium-ion battery anode mate-

rials during the charge/discharge process as they

provide large contact areas for the liquid electrolyte

and active materials while also shortening the ion

diffusion distance.

In order to further determine the chemical envi-

ronment of Zn, Fe and Co in the bicomponent

materials, XPS was performed (Fig. 5). It can be seen

that the Ti 2p XPS spectrum can be fitted with a single

TiO2/Fe2O3

TiO2/ZnO

TiO2/Co2O3

TiO2:JCPDS:21-1272

20 30 40 50 60 70 80

In
te

ns
ity

2θ(°)( )

Figure 3 XRD patterns of the as-prepared hybrid hollow spheres

templated by different hydrated sulfates. The JCPDS 21-1272 is

corresponding to the anatase TiO2.

Figure 4 N2 adsorption–desorption isotherms and pore size distributions (inset) of TiO2/Fe2O3 (a), TiO2//Co2O3 (b) and TiO2/ZnO

(c) hollow spheres.
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peak corresponding to TiO2 (Fig. 5a), and the Zn 2p

XPS spectrum can be fitted with a single peak with a

binding energy of 1022.3 eV (Fig. 5c) corresponding

to ZnO. In contrast, for bicomponent TiO2/Fe2O3, the

Fe 2p 1/2 and 3/2 XPS spectrum can be fitted with

two peaks, respectively, and indexed to Fe2O3 and Fe

(Fig. 5b). The Co 2p XPS spectrum can be fitted with

two peaks indicating the existence of Co2O3 and Co

in bicomponent TiO2/CO2O3 as expected. XPS results

further confirm that the desired bicomponent mate-

rials can be obtained by the above one-step

hydrothermal method.

Coin cells were assembled to evaluate the perfor-

mance of the bicomponent TiO2 hollow spheres as

anodes in lithium-ion batteries. The first three CV

curves of the hybrid spheres are presented in Fig. 6.

In the first cathodic sweep, the lithium-ion insertion

potentials are 1.42 V, 1.56 V and 1.57 V vs. Li/Li? for

TiO2/Fe2O3, TiO2/CO2O3 and TiO2/ZnO bicompo-

nent hollow spheres, respectively. This corresponds

to the reduction of Ti4? to Ti3? [39]. The subsequent

oxidation process occurs at 2.22 V, 2.16 V and 2.18 V

vs. Li/Li? for TiO2/Fe2O3, TiO2/CO2O3 and TiO2/

ZnO bicomponent hollow spheres. After the first

cycle, the cathodic peak potentials of the three

materials all shift to the higher voltage region. In

contrast, the anodic peak shifts to the lower voltage

region. This suggests a reduced anode polarization

and increased Li? insert/extraction reversibility

during electrochemical cycling. Concurrently, the

corresponding current peaks decrease revealing the

existence of an irreversible capacity loss in the initial

lithiation–delithiation process. The insertion and

extraction of lithium ions into and from the TiO2

lattice can be described as follows:

TiO2 þ xLiþ þ xe� $ LixTiO2

It can also be seen that unlike the CV curves of

TiO2/CO2O3 (Fig. 6a) and TiO2/ZnO hybrid hollow

spheres (Fig. 6c), there is a distinct cathodic peak for

Figure 5 XPS spectrum of the Ti (a), Fe (b), Co (c) and Zn (d) in the hybrid materials, raw data (black line) and fitted data (red line).
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the TiO2/Fe2O3 bicomponent hollow spheres

(Fig. 6b). Located initially at 1.99 V in the first cycle,

the peak moved to the higher voltage region (2.14 V)

in the second and third cycle. This observation may

be attributed to lithium insertion into the crystal

structure of Fe2O3 without a significant change in the

structure [40]. This would enable an improved

lithium-ion storage capability of the bimetallic hollow

spheres by essentially providing more sites for

lithium uptake. It is noteworthy that the second and

third cycles of the voltage–current curves for all three

samples almost overlap with each other. This sug-

gests good reversibility and stability of the electro-

chemical reaction after the first cycle.

Figure 7 presents the cycling and rate performance

of the bicomponent hollow spheres. The TiO2/Fe2O3,

TiO2/CO2O3 and TiO2/ZnO hollow spheres deliver

discharge capacities of 288.6, 180.3 and 221.1 mAh/g,

respectively, after 100 cycles at a current density of

0.1C. At a current density of 1C, the hybrid hollow

spheres also exhibit stable cycling performance. It can

be seen that the discharge capacity of the three elec-

trodes slightly decreases in the first 10 cycles and

then gradually stabilized during the following 90

cycles with a Coulombic efficiency of 99%. After 100

charge–discharge cycles, the TiO2/Fe2O3, TiO2/

CO2O3 and TiO2/ZnO bicomponent hollow spheres

still deliver discharge capacity of 210.5, 78.6 and 177.7

mAh/g, respectively. These sustained performance

values suggest that bicomponent hollow spheres are

promising anode materials even when subjected to

large current densities (Fig. 7b). Figure 7c presents

the rate capability of the bicomponent hollow spheres

at various current rates from 0.1C to 5C

(1C = 335 mAh/g). The capacity values are the

averaged over 10 cycles. As expected, the capacity

gradually decreases as the current rate increases. It

can be seen that among the three bicomponent hol-

low spheres, the TiO2/Fe2O3 hollow spheres show

the best rate performance with the rate performance

of the TiO2/CO2O3 and TiO2/ZnO hollow spheres

being comparable. For TiO2/Fe2O3 hollow spheres,

Figure 6 Cyclic voltammograms for the first (green), second (blue) and third (red) cycles for the TiO2/Fe2O3 (a), TiO2/CO2O3 (b) and

TiO2/ZnO (c) component spheres over the potential range of 0 V to 2.5 V vs. Li/Li? with a scan rate of 0.1 mV s-1.
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the reversible capacity of the electrode after 50 cycles

is 461.1, 307.8, 212.8, 174.3, 127.7 and 79.3 mAh/g for

current densities of 0.1C, 0.2C, 0.5C, 1C, 2C and 5C,

respectively. More importantly, when the current

density returns to 0.1C, a capacity of 288.6 mAh/g

can be recovered. This confirms the good rate per-

formance and stability of the bicomponent hollow

spheres. Despite TiO2/Co2O3 and TiO2/ZnO hollow

spheres possessing lower overall performance values

across all current densities, a relatively high dis-

charge capacity can still be recovered by reducing the

current density to 0.1C. This observation suggests

that the additional metal oxides play the same role in

these systems. It is noted that the initial capacity of

the three types of hybrid hollow spheres is more than

600 mAh/g, much higher than that of TiO2. The extra

capacity may be due to synergistic effect between

TiO2 and three different metal oxides. Firstly, as we

all known that the theoretical capacity of Fe2O3,

Co2O3 and ZnO is much higher than that of TiO2,

during cycling, the metal oxide will be reduced to

metal first, and then, metal will react with lithium to

form alloy, which will contribute more capacity.

Secondly, according to Ref. [41], the extra capacity

may be due to the further lithium storage via inter-

facial reaction between the metal and Li2O phase

boundary. And thirdly, the reduced metal may

improve the electrical conductivity of the anode,

which will further improve the rate performance of

the anode.

In order to further understand the enhanced elec-

trochemical performance of the bicomponent hollow

spheres, electrochemical impedance spectroscopy

(EIS) was used to evaluate the impedance and

lithium-ion diffusion rate. As shown in Fig. 8, the EIS

spectra are presented in the typical Nyquist plots

format showing a semicircle at the high-medium

frequency region which can be attributed to the

ohmic resistance (Rs) and the charge-transfer resis-

tance at the interface between the electrode and

electrolyte (Rct). The sloping line in the low frequency

region corresponds to lithium-ion diffusion in the

solid electrode [42]. The Nyquist plots are fitted by

using equivalent circuit modeling [43]. In the

Figure 7 Cycling performance at a current density of 0.1C (a) and 1C (b), rate performance of bicomponent hollow materials (c): TiO2/

Fe2O3 (red), TiO2/CO2O3 (blue) and TiO2/ZnO (green).
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equivalent circuit (inset), Rs and Rct are the ohmic

resistance and the charge-transfer resistance of the

electrodes. The constant phase-angle element (CPE)

and the Warburg impedance (W) indicate the

lithium-ion diffusion into the bulk active material.

The diameters of the resistance arcs for the TiO2/

Fe2O3 electrode are much smaller than those for

TiO2/CO2O3 and TiO2/ZnO electrodes. This indi-

cates that the TiO2/Fe2O3 electrode exhibits a lower

surface film resistance and charge-transfer resistance.

According to the fitting results (Table 1), the Rs, Rct

and W of the TiO2/Fe2O3 bicomponent hollow

spheres are smaller than those of TiO2/CO2O3 and

TiO2/ZnO. These results suggest that the electrical

conductivity, charge-transfer kinetics and diffusion

of lithium ions can be effectively improved by com-

bining TiO2 and Fe2O3.

Conclusions

Bicomponent TiO2 hollow spheres have been suc-

cessfully synthesized under hydrothermal conditions

using different hydrated sulfates as template. The

resulting structures are composed of both TiO2 and

the corresponding metal oxide derived from the

hydrated sulfate template. The bicomponent hollow

spheres are well developed and distinct with a

diameter of 2–4 lm. The rough interior surface and

loose grain-packed shells afford the hollow spheres

large specific surface areas for facilitating lithium-ion

diffusion during charging and discharging. These

bicomponent hollow spheres can greatly improve the

electrochemical properties of TiO2. The composition

of the hybrid spheres also has a significant impact on

the electrochemical performance of the electrode. The

attractive properties and one-step synthesis method

make the TiO2 bicomponent hollow spheres a

promising anode material for lithium-ion batteries.
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